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INTRODUCTION

In recent years, the notion of complex systems proved 
to be a very useful concept to define, describe, and 
study various natural phenomena observed in a vast 
number of scientific disciplines. Examples of scientific 
disciplines that highly benefit from this concept range 
from physics, mathematics, and computer science 
through biology and medicine as well as economy, to 
social sciences and psychology. Various techniques were 
developed to describe natural phenomena observed in 
these complex systems. Among these are artificial life, 
evolutionary computation, swarm intelligence, neural 
networks, parallel computing, cellular automata, and 
many others. In this text, we focus our attention to one 
of them, i.e. ‘cellular automata’.

We present a truly discrete modelling universe, 
discrete in time, space, and state: Cellular Automata 
(CAs) (Sloot & Hoekstra, 2007, Kroc, 2007, Sloot, 
Chopard & Hoekstra, 2004). It is good to emphasize 
the importance of CAs in solving certain classes of 
problems, which are not tractable by other techniques. 
CAs, despite theirs simplicity, are able to describe and 
reproduce many complex phenomena that are closely 
related to processes such as self-organization and 
emergence, which are often observed within the above 
mentioned scientific disciplines.  

BACKGROUND

We briefly explain the idea of complex systems and 
cellular automata and provide references to a number 
of essential publications in the field.

Complex Systems

The concept of complex systems (CSs) emerged simul-
taneously and often independently in various scientific 
disciplines (Fishwick, 2007, Bak, 1996, Resnick, 1997). 
This could be interpreted as an indication of their uni-
versality. Despite the diversity of those fields, there 
exist a number of common features within all complex 
systems. Typically a complex system consist of  a vast 
number of simple and locally operating parts, which are 
mutually interacting and producing a global complex 
response. Self-organization (Bak, 1996) and emergence, 
often observed within complex systems, are driven by 
dissipation of energy and/or information.

Self-organization can be easily explained with ant-
colony behavior studies where a vast number of identi-
cal processes, called ants, locally interact by physical 
contact or by using pheromone marked traces. There 
is no leader providing every ant with information or 
instructions what it should do. Despite the lack of such 
a leader or a hierarchy of leaders, ants are able to build 
complicated ant-colonies, feed their larvae, protect the 
colony, fight against other colonies, etc. All this is done 
automatically through a set of simple local interactions 
among the ants. It is well known that ants are respond-
ing on each stimuli by one out of 20 to 40 (depending 
on ant species) reactions, these are enough to produce 
the observed complexity. 

Emergence is defined as the occurrence of new 
processes operating at a higher level of abstraction then 
is the level at which the local rules operate. Each level 
usually has its own local rules different from rules op-
erating at other levels. An emergent, like an ant-colony, 
is a product of the process of emergence. There can 
be a whole hierarchy of emergents, e.g. as in the hu-
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man body, that  consists of chemicals and DNA, going 
through polypeptides, proteins, cellular infrastructures 
and cycles, further on to cells and tissues, organs, and 
bodies. We see that self-organization and emergence 
are often closely linked to one another.

Cellular Automata 

Early development of CAs dates back to A. Turing, 
S. Ulam, and J. von Neumann. We can define CA’s 
by four mutually interdependent parts: the lattice and 
its variables, the neighbourhood, and the local rules 
(Toffoli & Margolus, 1987, Toffoli, 1984, Vichniac, 
1984, Ilachinski, 2001, Wolfram, 2002, Wolfram 1994, 
Sloot & Hoekstra, 2007, Kroc, 2007). This is briefly 
explained below.

Lattices and Networks

A lattice is created by a grid of elements, for historical 
reasons called cells, which can be composed in one, 
two, three, or higher dimensional space. The lattice is 
typically composed of uniform cells such as, for instance 
squares, hexagons or triangles in two dimensions.

CAs operating on networks and graphs represent a 
generalization of classical CAs, which are working on 
regular lattices. Networks can be random or regular. 
Networks can have various topologies, which are clas-
sified by the degree of regularity and randomness. A 
lattice of cells can be interpreted as a regular network 
of vertices interconnected by edges. When we leave 
this regularity and allow some random neighbours, 
more precisely, if a major part of a network is regular 
and a smaller fraction of it is random, then we enter the 
domain of small-world networks. The idea of small-
world networks provides a unique tool, which allows 
us to capture many essential properties of naturally 
observed phenomena especially those linked to social 
networks and surprisingly to (metabolic and other) 
networks operating within living cells. Whereas small-
world networks are a mixture of regular and random 
networks, pure random networks have a completely 
different scope of use. It is worth to mention the concept 
of scale-free networks, which have a connectivity that 
does not depend on scale anymore (Kroc, 2007, Sloot, 
Chopard & Hoekstra, 2004).

Variables

A CA contains an arbitrary number of discrete vari-
ables. The number and range of them are dictated by 
the phenomenon under study. The simplest CAs are 
built using only one Boolean variable in one dimension 
(1D), see e.g. (Wolfram, 2002). Some of such simple 
1D CAs express even high complexity and are shown 
to be capable of the universal computation. 

Neighbourhoods

The neighbourhood, which is used to evaluate a local 
rule, is defined by a set of neighbouring cells including 
the updated cell itself in the case of regular lattices, 
Figure 1. Neighbours with relative coordinates [i, j+1], 
[i-1,j], [i, j-1], [i+1, j] of the updated cell [i, j] and 
located on North, West, South, and East, respectively, 
define the so called the von Neumann neighbourhood 
with radius r =1. The Moore neighbourhood with ra-
dius r =1 contains the same cells as the von Neumann 
neighbourhood plus diagonal cells located at relative 
positions [i-1, j+1], [i-1, j-1], [i+1, j-1], [i+1, j+1], i.e. 
North-west, South-west, South-east, and North-east, 
respectively.

There are many other types of neighbourhoods 
possible; neighbourhoods can even be spatially or 
temporally non-uniform. One example is the Margolus 
neighbourhood, used in diffusion modelling.

The boundaries for each CA can be fixed, reflecting 
or periodic. Periodic boundary conditions represent 
infinite lattices. Periodic means that, e.g. in one dimen-
sion, the most right cell of a lattice is connected to the 
most left lattice cell. Fixed boundary cells are kept at 
predefined values. Reflecting boundary cells reflect 
values back to the bulk of the lattice.

Local Rules

A local rule defines the evolution of each CA. Usu-
ally; it is realized by taking all variables from all cells 
within the neighbourhood and by evaluation of a set 
of logical and/or arithmetical operations written in the 
form of an algorithm. The vector s of those variables 
is updated according to the following local rule in the 
case of the von Neumann neighbourhood 

s[i,j] = f(s[i,j+1], s[i-1,j], s[i,j-1], s[i+1,j]),
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