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INTRODUCTION

We investigate the application of artificial neural 
networks (ANNs) to the classification of spectra from 
impact-echo signals. In this paper we provide analyses 
from simulated signals and the second part paper details 
results of lab experiments.

The data set for this research consists of sonic and 
ultrasonic impact-echo signal spectra obtained from 100 
3D-finite element models. These spectra, along with a 
categorization of the materials among homogeneous 
and defective classes depending on the kind of mate-
rial defects, were used to develop supervised neural 
network classifiers. Four levels of complexity were 
proposed for classification of materials as: material 
condition, kind of defect, defect orientation and defect 
dimension. Results from Multilayer Perceptron (MLP) 
and Radial Basis Function (RBF) neural networks with 
Linear Discriminant Analysis (LDA), and k-Nearest 
Neighbours (kNN) algorithms (Duda, Hart, & Stork, 
2000), (Bishop C.M., 2004) are compared. Suitable 
results for LDA and RBF were obtained.  

The impact-echo is a technique for non-destructive 
evaluation based on monitoring the surface motion re-
sulting from a short-duration mechanical impact. It has 
been widely used in applications of concrete structures 
in civil engineering. Cross-sectional resonant modes in 
impact-echo signals have been analyzed in elements of 
different shapes, such as, circular and square beams, 
beams with empty ducts or cement fillings, etc. In ad-
dition, frequency analyses of the displacement of the 
fundamental frequency to lower values for detection of 
cracks have been studied (Sansalone & Street, 1997), 
(Carino, 2001).

The impact-echo wave propagation can be analyzed 
from transient and stationary behaviour. The excitation 
signal (the impact) produces a short transient stage 
where the first P (normal stress), S (shear stress) and 

Rayleigh (superficial) waves arrive to the sensors; af-
terward the wave propagation phenomenon becomes 
stationary and a manifold of different mixtures of 
waves including various changes of S-wave to P-wave 
propagation mode and viceversa arrive to the sensors. 
Patterns of waveform displacements in this latter stage 
are known as the resonant modes of the material. The 
spectra of impact-echo signals provide of information 
for classification based on resonant modes the inspected 
materials. The classification tree approached in this 
paper has four levels from global to detailed classes 
with up to 12 classes in the lowest level. The levels 
are: (i) Material condition: homogeneous, one defect, 
multiple defects, (ii) Kind of defect: homogeneous, 
hole, crack, multiple defects, (iii) Defect orientation: 
homogeneous, hole in axis X or axis Y, crack in planes 
XY, ZY, or XZ, multiple defects, and (iv) Defect 
dimension: homogeneous, passing through and half 
passing through types of holes and cracks of level iii, 
multiple defects. Some examples of defective models 
are in Figure 1.

BACKGROUND

Neural networks applications in impact-echo testing 
include: detect flaws on concrete slabs, combining 
spectra of numerical simulations and real signals for 
network training (Pratt & Sansalone, 1992), identifi-
cation of unilaterally working sublayer cracks using 
numerically generated waveforms as network inputs 
(Stavroulakis, 1999), classification of concrete slabs in 
solid and defective (containing void or delamination), 
use of training features extracted from many repeti-
tions of impact-echo experiments on three specimens 
to be classified in three classes (Xiang & Tso, 2002), 
and to predict shallow crack depths in asphalt pave-
ments using features from an extensive real signal 
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dataset (Mei, 2004). All these studies used multilayer 
perceptron neural network and monosensor impact-
echo systems.

In a recent work, we classified impact-echo data 
by neural networks using temporal and frequency 
features extracted from the signals, finding that the 
better features were frequency features (Salazar, Unió, 
Serrano, & Gosalbez, 2007). Thus the present work 
is focused in exploiting only spectra information of 
the impact-echo signals. These spectra contain a large 
amount of redundant information. We applied Principal 
Component Analysis (PCA) to spectra for compress-
ing and removing noise. The proposed classification 
problem and the use of spectra PCA components as 
classification features are a new proposal in application 
of neural networks to impact-echo testing.

There is evidence that the first components of PCA 
retain essentially all of the useful information and this 
compression optimally removes noise and can be used 
to identify unusual spectra (Bailer-Jones, 1996), (Bailer-
Jones, Irwin, & Hippel, 1998), (Xu et al., 2004). The 
principal components represent sources of variance in 
the data. The projection of the pth spectrum onto the 
kth principal component is known as the admixture 
coefficient ak,p. The most significant principal compo-
nents contain those features which are most strongly 
correlated in many of the spectra. It follows that noise 
(which is uncorrelated with any other features by 
definition) will be represented in the less significant 
components. Thus by retaining only the more signifi-
cant components to represent the spectra we achieve 
a data compression that preferentially remove noise. 
The reduced reconstruction, yp of the pth spectrum xp, is 
obtained by using only the first r principal components 
to reconstruct the spectrum, i.e.
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where x  is the mean spectrum which is subtracted 
from the spectra before the eigenvectors are calcu-
lated, and uk is the kth principal component. x  can 
be considered as the zeroth eigenvector, although the 
degree of variance it explains depends on the specific 
data set and may be much less than that explained by 
the first eigenvectors.

Let ep be the error incurred in using this reduced 
reconstruction. By definition xp = yp + ep, so
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RECOGNITION OF DEFECT PATTERNS 
IN IMPACT-ECHO SPECTRA -SIMULA-
TIONS

Impact-Echo Signals

Simulated signals came from full transient dynamic 
analysis of 100 3D finite element models of simulated 
parallelepiped-shape material of 0.07x0.05x0.22m. 
(width, height and length) supported to one third and 
two thirds of the block length (direction z). Figure 1 
shows different examples of the models of defective 
pieces. From the transient analysis the dynamic response 
of the material structure (time-varying displacements 
in the structure) under the action of a transient load is 
estimated. The transient load, i.e. the hammer impact, 
was simulated by applying a force-time history of a half 
sine wave with a period of 64µs as a uniform pressure 
load on two elements at the centre of the model front 
face. The elastic material constants for the simulated 
material were: density 2700 kg/m3, elasticity modulus 
69500 Mpa. and Poisson’s ratio 0.22.

Elements having dimensions of about 0.01 m. were 
used in the models. These elements can accurately 
capture the frequency response up to 40 kHz. Surface 
displacement waveforms were taken from the simula-
tion results at 7 nodes in different locations on the 
material surface, see Figure 1a. Signals consisted of 
5000 samples recorded at a sampling frequency of 100 
kHz. To make possible to compare simulations with 
experiments, the second derivative of the displacement 
was calculated to work with accelerations, since the 
sensors available for experiments were mono-axial 
accelerometers. These accelerations were measured 
in the normal direction to the plane of the material 
surface accordingly to the configuration of the sensors 
in Figure 1a.

Feature Extraction and Selection

We investigate if the changes in the spectra, particularly 
in the zones of the fundamental frequencies, are related 
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