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INTRODUCTION

Classical ciphers are used to encrypt plaintext mes-
sages written in a natural language in such a way that 
they are readable for sender or intended recipient only. 
Many classical ciphers can be broken by brute-force 
search through the key-space. Methods of artificial 
intelligence, such as optimization heuristics, can be 
used to narrow the search space, to speed-up text 
processing and text recognition in the cryptanalytic 
process. Here we present a broad overview of differ-
ent AI techniques usable in cryptanalysis of classical 
ciphers. Specific methods to effectively recognize the 
correctly decrypted text among many possible decrypts 
are discussed in the next part Automated cryptanalysis 
– Language processing.

BACKGROUND

Cryptanalysis can be seen as an effort to translate a 
ciphertext (an encrypted text) to a human language. 
Cryptanalysis can thus be related to the computational 
linguistics. This area originated with efforts in the United 
States in the 1950s to have computers automatically 
translate texts from foreign languages into English, 
particularly Russian scientific journals. Nowadays it is 
a field of study devoted to developing algorithms and 
software for intelligently processing language data. 
Systematic (public) efforts to automate cryptanalysis 
using computers can be traced to first papers written 
in late ’70s (see e.g. Schatz, 1977). However, the 
research area has still many open problems, closely 
connected to an area of Artificial Intelligence. It can 
be concluded from the current state-of-the-art, that al-
though computers are very useful in many cryptanalytic 
tasks, a human intelligence is still essential in complete 
cryptanalysis.  

For convenience of a reader we recall some basic 
notions from cryptography. Very thorough survey of 
classical ciphers is written by Kahn (1974). A message 
to be encrypted (plaintext) is written in the lowercase 
alphabet P = {a, b, c… x, y, z}. The encrypted message 
(ciphertext) is written in uppercase alphabet C = {A, B, 
C… X, Y, Z}. Different alphabets are used in order to 
better distinguish plaintext and ciphertext, respectively. 
In fact these alphabets are the same.

There is a reversible encryption rule (algorithm) how 
to transform the plaintext to the ciphertext, and vice-
versa. These algorithms depend on a secret parameter 
K called the key. The set of possible keys K is called 
the key-space. Input and output of these algorithms is 
a string of letters from respective alphabets, P*   and 
C*. Both, sender as well as receiver, uses the same 
secret key, and the same encryption and decryption 
algorithms. 

There are three basic classical systems to encrypt a 
message, namely a substitution, a transposition, and a 
running key. In a substitution cipher a string of letters 
is replaced by another string of letters using prescribed 
substitution of single letters, e.g. left ‘a’ to ‘A’, replac-
ing letter ‘b’ by letter ‘N’, letter ‘c’ by letter ‘G’, etc. A 
transposition cipher rearranges order of letters according 
to a secret key K. Unlike substitution ciphers the fre-
quency of letters in the plaintext and ciphertext remains 
the same. This characteristic is used in recognizing that 
the text was encrypted by some transposition cipher. 
A typical running key cipher is to derive from a main 
key K the running key K0 K1 K2…Kn.  If P = C = K   is a 
group, then simply yi = eK( xi) = xi  +  Ki .

Thus it is convenient to define a ciphering algorithm 
for classical ciphers as follows:

Definition 1: A classical cipher system is a five-
tuple (P,C,K,E,D), where the following conditions are 
satisfied:
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1. P  is a finite set of  a plaintext alphabet, and P* 

the set of all finite strings of symbols from P.
2. C  is a finite set of  a ciphertext alphabet, and C* 

the set of all finite strings of symbols from C..
3. K  is a finite set of possible keys.
4. For each K ∈ K , there is an encryption algorithm 

eK ∈ E,  and a corresponding decryption  algorithm 
dK ∈ D  such that   dK (eK(x)) = x  for every  input  
x∈ P  and K ∈ K..

5. The ciphering algorithm assigns to any finite string 
x0 x1 x2…xn from P* the resulting ciphertext string 
y0 y1 y2…yn from C*, where yi = eK( xi) . The actual 
key may, or need not depend on the index i.

Another typical case for P, and C, are r-tuples of 
the Latin alphabet. For transposition ciphers, the key 
is periodically repeated for r-tuples. For substitution 
ciphers of r-tuples, the key is an r-tuple of keys. In the 
case of running keys, there is another key stream gen-
erator g:  K × P → K which generates from the initial 
key K, and possibly from the plaintext x0 x1 x2…xn-1 the 
actual key Kn .

For classical ciphers, there are two typical situations 
when we try to recover the plaintext: 

1. Let the input to decryption  algorithm dK ∈ D with 
unknown key K  be a ciphertext string y0 y1 y2…yn  
from  C*,  where yi = eK( xi). Our aim is to find 
the plaintext string x0 x1 x2…xn from P*.  Thus in 
each execution an algorithm is searching through 
Key-space K. 

2. The decryption algorithm dK ∈ D and key K are 
unknown. Our aim is to find for the ciphertext 
string y0 y1 y2…yn  from C*, where yi = eK( xi), the 
plaintext string  x0 x1 x2…xn  from  P*.  This requires 
a different algorithm than the actual dK ∈ D, as 
well as some additional information. Usually there 
is available another ciphertext, say z0 z1 z2…zn 
from C*.  Thus in each execution an algorithm is 
searching through possible substitutions which 
are suitable for both ciphertexts. 

In both cases we need a plaintext recognition sub-
routine which evaluates a candidate substring of length 
v for a possible  plaintext, say  ct c1+t c2+t…cv+t  :=  xt 
x1+t x2+t…xv+t . Such automated text recognition needs 
an adequate model of a used language. 

AUTOMATED CRyPTANALySIS

There are two straightforward methods for automated 
cryptanalysis. Unfortunately none of them is for lon-
ger strings applicable in practice. The first one is for 
transposition ciphers. When no other information about 
the cipher is known, we can use a general method, 
called anagramming, to decipher the message. In this 
method we are trying to assemble the meaningful string 
(anagram) from the ciphertext. This is accomplished 
by arranging the letters to words from the dictionary. 
When we find the meaningful word we process the rest 
of the message in the same way. When we are not able 
to create more meaningful words, we retrace our steps, 
and try other possible words until the whole meaningful 
anagram is found.

The second, and very similar, is for the substitution 
ciphers. Here we are trying to assemble the meaning-
ful string (anagram) from the ciphertext by searching 
through all possible substitutions of letters to get words 
from dictionary of the used language. Although the size 
of the key-space is large, automated cryptanalysis uses 
many other methods based, e.g. on frequency distri-
bution of letters. Automated cryptanalysis of simple 
substitution ciphers can decrypt most of the messages 
both with known word boundaries (Carrol & Martin, 
1986), and without this information (Ramesh, Athithan 
& Thiruvengadam, 1993; Jakobsen, 1995). There are 
other classical ciphers, where transposition or substitu-
tion depends not only on the actual key, but also on a 
position within a block of letters of the string. 

For effective automated cryptanalysis at least two 
layers of plaintext candidate processing, filtering and 
scoring, are required. Better results are achieved by 
additional filtering layers.  This of course increases 
computational complexity. Bellow we give an overview 
of these filtering layers.

Automated Brute Force Attacks 

The basic type of algorithm suitable for automated 
cryptanalysis is a brute force attack. As we have to 
search the whole key-space, this attack is only feasible 
when key-space is “not too large”. Exact quantification 
of the searchable key-space depends on computational 
resources available to an attacker, and the average 
time needed to verify a candidate for decrypted text. 
Thus, the plaintext recognition is the most critical part 
of the algorithm from the performance point of view. 
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