
���

Automated Cryptanalysis of Classical Ciphers
Otokar Grošek
Slovak University of Technology, Slovakia

Pavol Zajac
Slovak University of Technology, Slovakia

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

Classical ciphers are used to encrypt plaintext mes-
sages written in a natural language in such a way that
they are readable for sender or intended recipient only.
Many classical ciphers can be broken by brute-force
search through the key-space. Methods of artificial
intelligence, such as optimization heuristics, can be
used to narrow the search space, to speed-up text
processing and text recognition in the cryptanalytic
process. Here we present a broad overview of differ-
ent AI techniques usable in cryptanalysis of classical
ciphers. Specific methods to effectively recognize the
correctly decrypted text among many possible decrypts
are discussed in the next part Automated cryptanalysis
– Language processing.

BACKGROUND

Cryptanalysis can be seen as an effort to translate a
ciphertext (an encrypted text) to a human language.
Cryptanalysis can thus be related to the computational
linguistics. This area originated with efforts in the United
States in the 1950s to have computers automatically
translate texts from foreign languages into English,
particularly Russian scientific journals. Nowadays it is
a field of study devoted to developing algorithms and
software for intelligently processing language data.
Systematic (public) efforts to automate cryptanalysis
using computers can be traced to first papers written
in late ’70s (see e.g. Schatz, 1977). However, the
research area has still many open problems, closely
connected to an area of Artificial Intelligence. It can
be concluded from the current state-of-the-art, that al-
though computers are very useful in many cryptanalytic
tasks, a human intelligence is still essential in complete
cryptanalysis.

For convenience of a reader we recall some basic
notions from cryptography. Very thorough survey of
classical ciphers is written by Kahn (1974). A message
to be encrypted (plaintext) is written in the lowercase
alphabet P = {a, b, c… x, y, z}. The encrypted message
(ciphertext) is written in uppercase alphabet C = {A, B,
C… X, Y, Z}. Different alphabets are used in order to
better distinguish plaintext and ciphertext, respectively.
In fact these alphabets are the same.

There is a reversible encryption rule (algorithm) how
to transform the plaintext to the ciphertext, and vice-
versa. These algorithms depend on a secret parameter
K called the key. The set of possible keys K is called
the key-space. Input and output of these algorithms is
a string of letters from respective alphabets, P* and
C*. Both, sender as well as receiver, uses the same
secret key, and the same encryption and decryption
algorithms.

There are three basic classical systems to encrypt a
message, namely a substitution, a transposition, and a
running key. In a substitution cipher a string of letters
is replaced by another string of letters using prescribed
substitution of single letters, e.g. left ‘a’ to ‘A’, replac-
ing letter ‘b’ by letter ‘N’, letter ‘c’ by letter ‘G’, etc. A
transposition cipher rearranges order of letters according
to a secret key K. Unlike substitution ciphers the fre-
quency of letters in the plaintext and ciphertext remains
the same. This characteristic is used in recognizing that
the text was encrypted by some transposition cipher.
A typical running key cipher is to derive from a main
key K the running key K0 K1 K2…Kn. If P = C = K is a
group, then simply yi = eK(xi) = xi + Ki .

Thus it is convenient to define a ciphering algorithm
for classical ciphers as follows:

Definition 1: A classical cipher system is a five-
tuple (P,C,K,E,D), where the following conditions are
satisfied:

 ���

Automated Cryptanalysis of Classical Ciphers

A
1. P is a finite set of a plaintext alphabet, and P*

the set of all finite strings of symbols from P.
2. C is a finite set of a ciphertext alphabet, and C*

the set of all finite strings of symbols from C..
3. K is a finite set of possible keys.
4. For each K ∈ K , there is an encryption algorithm

eK ∈ E, and a corresponding decryption algorithm
dK ∈ D such that dK (eK(x)) = x for every input
x∈ P and K ∈ K..

5. The ciphering algorithm assigns to any finite string
x0 x1 x2…xn from P* the resulting ciphertext string
y0 y1 y2…yn from C*, where yi = eK(xi) . The actual
key may, or need not depend on the index i.

Another typical case for P, and C, are r-tuples of
the Latin alphabet. For transposition ciphers, the key
is periodically repeated for r-tuples. For substitution
ciphers of r-tuples, the key is an r-tuple of keys. In the
case of running keys, there is another key stream gen-
erator g: K × P → K which generates from the initial
key K, and possibly from the plaintext x0 x1 x2…xn-1 the
actual key Kn .

For classical ciphers, there are two typical situations
when we try to recover the plaintext:

1. Let the input to decryption algorithm dK ∈ D with
unknown key K be a ciphertext string y0 y1 y2…yn
from C*, where yi = eK(xi). Our aim is to find
the plaintext string x0 x1 x2…xn from P*. Thus in
each execution an algorithm is searching through
Key-space K.

2. The decryption algorithm dK ∈ D and key K are
unknown. Our aim is to find for the ciphertext
string y0 y1 y2…yn from C*, where yi = eK(xi), the
plaintext string x0 x1 x2…xn from P*. This requires
a different algorithm than the actual dK ∈ D, as
well as some additional information. Usually there
is available another ciphertext, say z0 z1 z2…zn
from C*. Thus in each execution an algorithm is
searching through possible substitutions which
are suitable for both ciphertexts.

In both cases we need a plaintext recognition sub-
routine which evaluates a candidate substring of length
v for a possible plaintext, say ct c1+t c2+t…cv+t := xt
x1+t x2+t…xv+t . Such automated text recognition needs
an adequate model of a used language.

AUTOMATED CRyPTANALySIS

There are two straightforward methods for automated
cryptanalysis. Unfortunately none of them is for lon-
ger strings applicable in practice. The first one is for
transposition ciphers. When no other information about
the cipher is known, we can use a general method,
called anagramming, to decipher the message. In this
method we are trying to assemble the meaningful string
(anagram) from the ciphertext. This is accomplished
by arranging the letters to words from the dictionary.
When we find the meaningful word we process the rest
of the message in the same way. When we are not able
to create more meaningful words, we retrace our steps,
and try other possible words until the whole meaningful
anagram is found.

The second, and very similar, is for the substitution
ciphers. Here we are trying to assemble the meaning-
ful string (anagram) from the ciphertext by searching
through all possible substitutions of letters to get words
from dictionary of the used language. Although the size
of the key-space is large, automated cryptanalysis uses
many other methods based, e.g. on frequency distri-
bution of letters. Automated cryptanalysis of simple
substitution ciphers can decrypt most of the messages
both with known word boundaries (Carrol & Martin,
1986), and without this information (Ramesh, Athithan
& Thiruvengadam, 1993; Jakobsen, 1995). There are
other classical ciphers, where transposition or substitu-
tion depends not only on the actual key, but also on a
position within a block of letters of the string.

For effective automated cryptanalysis at least two
layers of plaintext candidate processing, filtering and
scoring, are required. Better results are achieved by
additional filtering layers. This of course increases
computational complexity. Bellow we give an overview
of these filtering layers.

Automated Brute Force Attacks

The basic type of algorithm suitable for automated
cryptanalysis is a brute force attack. As we have to
search the whole key-space, this attack is only feasible
when key-space is “not too large”. Exact quantification
of the searchable key-space depends on computational
resources available to an attacker, and the average
time needed to verify a candidate for decrypted text.
Thus, the plaintext recognition is the most critical part
of the algorithm from the performance point of view.

4 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/automated-cryptanalysis-classical-ciphers/10246

Related Content

Trajectory Planning and Control Algorithms of Mobile Robots for Static Environments
Claudio Urrea (2019). Advanced Fuzzy Logic Approaches in Engineering Science (pp. 378-400).

www.irma-international.org/chapter/trajectory-planning-and-control-algorithms-of-mobile-robots-for-static-

environments/212344

CSAP: Cyber Security Asynchronous Programming With C++20 and C# 8 for Internet of Things and

Embedded Software Systems
Marius Iulian Mihailescuand Stefania Loredana Nita (2021). Examining the Impact of Deep Learning and IoT

on Multi-Industry Applications (pp. 249-269).

www.irma-international.org/chapter/csap/270425

A Greedy Algorithm for Fuzzy Shortest Path Problem using Quasi-Gaussian Fuzzy Weights
Madhushi Vermaand K. K. Shukla (2013). International Journal of Fuzzy System Applications (pp. 55-70).

www.irma-international.org/article/greedy-algorithm-fuzzy-shortest-path/77862

COVID-19 Lesion Segmentation and Classification of Lung CTs Using GMM-Based Hidden Markov

Random Field and ResNet 18
Rajeev Kumar Gupta, Pranav Gautam, Rajesh Kumar Pateriya, Priyanka Vermaand Yatendra Sahu (2022).

International Journal of Fuzzy System Applications (pp. 1-21).

www.irma-international.org/article/covid-19-lesion-segmentation-and-classification-of-lung-cts-using-gmm-based-hidden-

markov-random-field-and-resnet-18/296587

A Novel Neuro-Fuzzy System-Based Autism Spectrum Disorder
Rubal Jeet, Mohammad Shabaz, Garima Vermaand Vinay Kumar Nassa (2021). Artificial Intelligence for

Accurate Analysis and Detection of Autism Spectrum Disorder (pp. 25-39).

www.irma-international.org/chapter/a-novel-neuro-fuzzy-system-based-autism-spectrum-disorder/286335

http://www.igi-global.com/chapter/automated-cryptanalysis-classical-ciphers/10246
http://www.igi-global.com/chapter/automated-cryptanalysis-classical-ciphers/10246
http://www.irma-international.org/chapter/trajectory-planning-and-control-algorithms-of-mobile-robots-for-static-environments/212344
http://www.irma-international.org/chapter/trajectory-planning-and-control-algorithms-of-mobile-robots-for-static-environments/212344
http://www.irma-international.org/chapter/csap/270425
http://www.irma-international.org/article/greedy-algorithm-fuzzy-shortest-path/77862
http://www.irma-international.org/article/covid-19-lesion-segmentation-and-classification-of-lung-cts-using-gmm-based-hidden-markov-random-field-and-resnet-18/296587
http://www.irma-international.org/article/covid-19-lesion-segmentation-and-classification-of-lung-cts-using-gmm-based-hidden-markov-random-field-and-resnet-18/296587
http://www.irma-international.org/chapter/a-novel-neuro-fuzzy-system-based-autism-spectrum-disorder/286335

