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INTRODUCTION

Classical ciphers are used to encrypt plaintext messages 
written in a natural language in such a way that they are 
readable for sender or intended recipient only. Many 
classical ciphers can be broken by brute-force search 
through the key-space. One of the pertinent problems 
arising in automated cryptanalysis is the plaintext rec-
ognition. A computer should be able to decide which 
of many possible decrypts are meaningful. This can 
be accomplished by means of a text scoring function, 
based, e.g. on n-grams or other text statistics. A scor-
ing function can also be used in conjunction with AI 
methods to speedup cryptanalysis.

BACKGROUND

Language recognition is a field of artificial intelli-
gence studying how to employ computers to recog-
nize language of a text. This is a simple task when 
we have enough amount of text with accents since 
they characterize used language with very high ac-
curacy.  Nowadays there are plenty of toolkits which 
automatically check/correct often both spelling and 
grammatical mistakes and errors. In connection with 
this we recall also the NIST Language Recognition 
Evaluation (LRE-05, LRE-07) as a part of an ongoing 
series of evaluations of language recognition technol-
ogy. McMahon & Smith (1998) present an overview 
of natural language processing techniques based on 
statistical models. 

We recall some basic notions from cryptography (see 
the article automated cryptanalysis of classical ciphers 
for more details). There is a reversible encryption rule 
(algorithm) how to transform plaintext to the ciphertext, 
and vice-versa. These algorithms depend on a secret 
parameter K called the key. The set of possible keys K 
is called the key-space. Input and output of these algo-

rithms is a string of letters from plaintext, or ciphertext 
alphabet respectively. Both, sender as well as receiver, 
uses the same secret key, and the same encryption and 
decryption algorithms. 

Cryptanalysis is a process of key recovery, or plain-
text recovery without the knowledge of the key. In both 
cases we need a plaintext recognition subroutine which 
evaluates (with some probability) every candidate 
substring, whether it is a valid plaintext or not. Such 
automated text recognition requires an adequate model 
of a used language. 

PLAINTEXT RECOGNITION FOR 
AUTOMATED CRyPTANALySIS

In the process of automated cryptanalysis we decrypt 
the ciphertext with many possible keys to obtain 
candidate plaintexts. Most of the candidates are incor-
rect, having no meaning in a natural language. On the 
other hand, even the correct plaintext can be hard to 
recognize and with the wrong recognition routine can 
be missed altogether.

The basic type of algorithm suitable for automated 
cryptanalysis is a brute force attack. This attack is only 
feasible when key-space is searchable on computational 
resources available to an attacker. The average time 
needed to verify a candidate strongly influences the size 
of searchable key-space. Thus, the plaintext recogni-
tion is the most critical part of the algorithm from the 
performance point of view. On the other hand, only the 
most complex algorithms achieve really high accuracy 
of the plaintext recognition. Thus the complexity and 
accuracy of plaintext recognition algorithms must be 
carefully balanced. 

A generic brute force algorithm with plaintext 
recognition can be described by the pseudo-code in 
Exhibit A.
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Algorithm integrates the three layers of plaintext 
recognition, namely negative test predicate, fast scor-
ing function and precise scoring function, as a three-
layer filter. The final scoring function is also used to 
sort the outputs. First filter should be very fast, with 
very low error probability. Fast score should be easy 
to compute, but it is not required to precisely identify 
the correct plaintext. Correct plaintext recognition is 
the role of precise scoring function. In the algorithm, 
the best score is the highest one. If the score is com-
puted in the opposite meaning, the algorithm must be 
rewritten accordingly.

In some cases, we can integrate a fast scoring func-
tion within the negative test or with the precise scoring, 
leading to two-layer filters, as in (Zajac, 2006a). It 
is also possible to use even more steps of predicate-
based and score-based filtering, respectively. However, 
experiments show that the proposed architecture of 

three-layers is the most flexible, and more layers can 
even lead to performance decrease. Experimental results 
are shown in Table 1.

Negative Filtering

The goal of the negative test predicate is to identify 
candidate texts that are NOT plaintext (with very high 
probability, ideally with certainty). People can clearly 
recognize the wrong text just by looking at it. It is in the 
area of artificial intelligence to implement this ability in 
computers. However, most nowadays AI methods (e.g. 
neural networks) seem to be too slow, to be applicable 
in this stage of a brute-force algorithm, as every text 
must be evaluated with this predicate. 

Most of the methods for fast negative text filter-
ing are based on prohibited n-grams. As an n-gram 

 INPUT:     ciphertext string Y = y0 y1 y2…yn   
 OUTPUT: ordered sequence S of possible plaintexts with their scores  
1. Let S = { } 
2. For each key K ∈ K do 

2.1. Let X = dK( Y) be a candidate plaintext. 
2.2. Compute negative test predicate filter(X). If predicate is true, continue with step 2. 
2.3. Compute f ast scoring function fastScore(X). If fastScore(X) <  L IMITF, continue w ith

step 2. 
2.4. Compute precise scoring function score(X). If score(X) < LIMIT, continue with step 2. 
2.5. Let S = S ∪ {<score(X), X> } 

3. Sort S by key score(X) descending. 
4. Return S. 
 

Exhibit A.

Key-space Size Negative filter Score-based filter Remaining 
texts

Total time 
[s]

9! 89.11% 10.82% 254 1.2

10! 89.15% 10.78% 2903 5.8

11! 88.08% 8.92% 239501 341

12! 90.10% 9.85% 1193512 746

Table 1. Performance of the three-layer decryption of a table-transposition cipher using a brute-force search. 
First filter was negative predicate-based, removing all decrypts with first 4 letters not forming a valid n-gram 
(about 90 % of texts were removed). Score was then computed as the count of valid tetragrams in the whole text. 
If this count was lower then given threshold (12), then the text was removed in the score-based filter. Finally, 
remaining texts were scored using the dictionary words. 
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