IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Space-Time Coding For Non-Coherent Cooperative Communications

Space-Time Coding For Non-Coherent Cooperative Communications
View Sample PDF
Author(s): J. Harshan (Indian Institute of Science, India), G. Susinder Rajan (Indian Institute of Science, India)and B. Sundar Rajan (Indian Institute of Science, India)
Copyright: 2010
Pages: 29
Source title: Cooperative Communications for Improved Wireless Network Transmission: Framework for Virtual Antenna Array Applications
Source Author(s)/Editor(s): Murat Uysal (University of Waterloo, Canada)
DOI: 10.4018/978-1-60566-665-5.ch013

Purchase

View Space-Time Coding For Non-Coherent Cooperative Communications on the publisher's website for pricing and purchasing information.

Abstract

Cooperative communication in a wireless network can be based on the relay channel model where a set of users act as relays to assist a source terminal in transmitting information to a destination terminal. Recently, the idea of space-time coding (STC) has been applied to wireless networks wherein the relay nodes cooperate to process the received signal from the source and forward them to the destination such that the signal received at the destination appears like a space-time block code (STBC). Such STBCs (referred as distributed space time block codes [DSTBCs]) when appropriately designed are known to offer spatial diversity. It is known that separate classes of DSTBCs can be designed based on the destination‘ s knowledge of various fading channels in the network. DSTBCs designed for the scenario when the destination has either the knowledge of only a proper subset of the channels or no knowledge of any of the channels are called non-coherent DSTBCs. This chapter addresses the problems and results associated with the design, code construction, and performance analysis (in terms of pairwise error probability [PEP]) of various noncoherent DSTBCs.

Related Content

J. Mangaiyarkkarasi, J. Shanthalakshmi Revathy. © 2024. 34 pages.
Gummadi Surya Prakash, W. Chandra, Shilpa Mehta, Rupesh Kumar. © 2024. 22 pages.
Duygu Nazan Gençoğlan. © 2024. 35 pages.
Smrity Dwivedi. © 2024. 20 pages.
Pallavi Sapkale, Shilpa Mehta. © 2024. 21 pages.
Pardhu Thottempudi, Vijay Kumar. © 2024. 43 pages.
Sathish Kumar Danasegaran, Elizabeth Caroline Britto, S. Dhanasekaran, G. Rajalakshmi, S. Lalithakumari, A. Sivasangari, G. Sathish Kumar. © 2024. 18 pages.
Body Bottom