IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Single Electronics for Biomedical Applications

Single Electronics for Biomedical Applications
View Sample PDF
Author(s): Deep Kamal Kaur Randhawa (Guru Nanak Dev University, India)
Copyright: 2017
Pages: 16
Source title: Computational Tools and Techniques for Biomedical Signal Processing
Source Author(s)/Editor(s): Butta Singh (Guru Nanak Dev University, India)
DOI: 10.4018/978-1-5225-0660-7.ch010

Purchase

View Single Electronics for Biomedical Applications on the publisher's website for pricing and purchasing information.

Abstract

The nanoelectronic circuits based on single electronics would revolutionise the new generation electronic bio-medical gadgets. The high speed nanoelectronic devices would make these gadgets faster and more accurate. The nanoelectronic integrated circuits would be a boon for power saving along with advanced portability. As the scaling down of silicon based integrated circuits is limited in nanometer regime alternative materials like organic molecules, polymers, carbon nanotubes and graphene are focal point of research. These materials exhibit various electrical, electronic and mechanical properties, flexibility being one of very significant ones. Flexible nanelectronic integrated circuits would make biomedical applications very patient friendly. The in-vivo examination and diagnosis would be less injurious to the body. Also the flexible nature will increase the maneuverability of the device by the operator. It will improve the targeted diagnosis and targeted drug delivery procedures. This would further facilitate system-on- chip (soc) that will integrate multiple biomedical signal acquisition (ECG, EEG, EP, and respiration-related signals) with on-chip digital signal processing.

Related Content

Aswathy Ravikumar, Harini Sriraman. © 2023. 18 pages.
Ezhilarasie R., Aishwarya N., Subramani V., Umamakeswari A.. © 2023. 10 pages.
Sangeetha J.. © 2023. 13 pages.
Manivannan Doraipandian, Sriram J., Yathishan D., Palanivel S.. © 2023. 14 pages.
T. Kavitha, Malini S., Senbagavalli G.. © 2023. 36 pages.
Uma K. V., Aakash V., Deisy C.. © 2023. 23 pages.
Alageswaran Ramaiah, Arun K. S., Yathishan D., Sriram J., Palanivel S.. © 2023. 17 pages.
Body Bottom