IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Product Design Applied to Formulated Products: A Course on Their Design and Development that Integrates Knowledge of Materials Chemistry, (Nano)Structure and Functional Properties

Product Design Applied to Formulated Products: A Course on Their Design and Development that Integrates Knowledge of Materials Chemistry, (Nano)Structure and Functional Properties
View Sample PDF
Author(s): Andrew M. Bodratti (University at Buffalo (UB), The State University of New York (SUNY), USA), Zhiqi He (University at Buffalo (UB), The State University of New York (SUNY), USA), Marina Tsianou (University at Buffalo (UB), The State University of New York (SUNY), USA), Chong Cheng (University at Buffalo (UB), The State University of New York (SUNY), USA)and Paschalis Alexandridis (University at Buffalo (UB), The State University of New York (SUNY), USA)
Copyright: 2017
Pages: 24
Source title: Materials Science and Engineering: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-5225-1798-6.ch021

Purchase


Abstract

Product development is a multi-faceted role that a growing number of engineers are tasked with. This represents a significant shift in career paths for those employed in the chemical and materials engineering disciplines, who typically were concerned with bulk commodity manufacturing. This paradigm shift requires the undergraduate curriculum to be adapted to prepare students for these new responsibilities. The authors present here on a product design capstone course developed for chemical engineering seniors at the University at Buffalo (UB), The State University of New York (SUNY). The course encompasses the following themes: a general framework for product design and development (identify customer needs, convert needs to specifications, create ideas/concepts, select concept, formulate/test/manufacture product; and (nano)structure-property relations that guide the search for smart/tunable/functional materials for contemporary needs and challenges. These two main themes are enriched with case studies of successful products. Students put the course material into practice by working through formulated product design projects that are drawn from real-world problems. The authors begin by presenting the course organization, teaching techniques, and assessment strategy. They then discuss examples of student work to show how students apply the course material to solve problems. Finally, they present an analysis of historical student performance in the course. The analysis seeks to identify correlation between related student deliverables, and also between the Product Design course and a prerequisite materials science and engineering course.

Related Content

Erfan Nouri, Alireza Kardan, Vahid Mottaghitalab. © 2024. 33 pages.
Mudassar Shahzad, Noor-ul-Huda Altaf, Muhammad Ayyaz, Sehrish Maqsood, Tayyba Shoukat, Mumtaz Ali, Muhammad Yasin Naz, Shazia Shukrullah. © 2024. 31 pages.
Erfan Nouri, Alireza Kardan, Vahid Mottaghitalab. © 2024. 32 pages.
Davronjon Abduvokhidov, Zhitong Chen, Jamoliddin Razzokov. © 2024. 16 pages.
Shahid Ali. © 2024. 25 pages.
Aamir Shahzad, Rabia Waris, Muhammad Kashif, Alina Manzoor, Maogang He. © 2024. 13 pages.
Soraya Trabelsi, Ezeddine Sediki. © 2024. 23 pages.
Body Bottom