IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Probabilistic Temporal Network for Numeric and Symbolic Time Information

Probabilistic Temporal Network for Numeric and Symbolic Time Information
View Sample PDF
Author(s): Malek Mouhoub (University of Regina, Canada)and Jia Liu (University of Regina, Canada)
Copyright: 2011
Pages: 20
Source title: Knowledge-Based Intelligent System Advancements: Systemic and Cybernetic Approaches
Source Author(s)/Editor(s): Jerzy Jozefczyk (Wroclaw University of Technology, Poland)and Donat Orski (Wroclaw University of Technology, Poland)
DOI: 10.4018/978-1-61692-811-7.ch004

Purchase

View Probabilistic Temporal Network for Numeric and Symbolic Time Information on the publisher's website for pricing and purchasing information.

Abstract

We propose a probabilistic extension of Allen’s Interval Algebra for managing uncertain temporal relations. Although previous work on various uncertain forms of quantitative and qualitative temporal networks have been proposed in the literature, little has been addressed to the most obvious type of uncertainty, namely the probabilistic one. More precisely, our model adapts the probabilistic Constraint Satisfaction Problem (CSP) framework in order to handle uncertain symbolic and numeric temporal constraints. In a probabilistic CSP, each constraint C is given a probability of its existence in the real world. There is thus more than one CSP to solve as opposed to the traditional CSP where no such uncertainties exist. In a probabilistic temporal CSP, since we use the Interval Algebra where a constraint is a disjunction of Allen primitives, the probability is assigned to each of these Allen primitives rather than to the temporal constraint. This means that a probabilistic temporal CSP involves many possible temporal CSPs, each with a probability of its existence. Solving a probabilistic temporal CSP consists of finding a scenario that has the highest probability to be the solution for the real world. This is an optimization problem that we solve using a branch and bound algorithm we propose and involving constraint propagation. Experimental study conducted on randomly generated temporal problems demonstrates the efficiency in time of our solving method. In the case of uncertain numeric constraints, our TemPro framework for handling numeric and symbolic temporal constraints is extended to handle uncertain domains. An algorithm for dividing domains into non-overlapping areas is proposed. This algorithm guarantees that the generated possible worlds do not intersect. Probable worlds are then constructed by combining these areas. A new branch and bound algorithm, we propose, is finally applied to find the most robust solution.

Related Content

Man Tianxing, Vasiliy Yurievich Osipov, Ildar Raisovich Baimuratov, Natalia Alexandrovna Zhukova, Alexander Ivanovich Vodyaho, Sergey Vyacheslavovich Lebedev. © 2020. 27 pages.
Alexey Kashevnik, Nikolay Teslya. © 2020. 23 pages.
Sergey Vyacheslavovich Lebedev, Michail Panteleyev. © 2020. 26 pages.
Valentin Olenev, Yuriy Sheynin, Irina Lavrovskaya, Ilya Korobkov, Lev Kurbanov, Nadezhda Chumakova, Nikolay Sinyov. © 2020. 42 pages.
Konstantin Nedovodeev, Yuriy Sheynin, Alexey Syschikov, Boris Sedov, Vera Ivanova, Sergey Pakharev. © 2020. 34 pages.
Andrey Kuzmin, Maxim Safronov, Oleg Bodin, Victor Baranov. © 2020. 23 pages.
Alexander Yu. Meigal, Dmitry G. Korzun, Alex P. Moschevikin, Sergey Reginya, Liudmila I. Gerasimova-Meigal. © 2020. 26 pages.
Body Bottom