IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Optimal Operational Strategy for PV/Wind-Diesel Hybrid Power Generation System with Energy Storage

Optimal Operational Strategy for PV/Wind-Diesel Hybrid Power Generation System with Energy Storage
View Sample PDF
Author(s): Vincent Anayochukwu Ani (University of Nigeria, Nsukka, Nigeria)
Copyright: 2017
Pages: 23
Source title: Renewable and Alternative Energy: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-5225-1671-2.ch050

Purchase

View Optimal Operational Strategy for PV/Wind-Diesel Hybrid Power Generation System with Energy Storage on the publisher's website for pricing and purchasing information.

Abstract

Telecommunications industry requires efficient, reliable and cost-effective hybrid power system as alternative to the power supplied by diesel generator. This paper proposed an operational control algorithm that will be used to control and supervise the operations of PV/Wind-Diesel hybrid power generation system for GSM base station sites. The control algorithm was developed in such a way that it coordinates when power should be generated by renewable energy (PV panels and Wind turbine) and when it should be generated by diesel generator and is intended to maximize the use of renewable system while limiting the use of diesel generator. Diesel generator is allocated only when the demand cannot be met by the renewable energy sources including battery bank. The developed algorithm was used to study the operations of the hybrid PV/Wind-Diesel energy system. The control simulation shows that the developed algorithm reduces the operational hours of the diesel generator thereby reducing the running cost of the hybrid energy system as well as the pollutant emissions. With the data collected from the site, a detailed economic and environmental analysis was carried out using micro power optimization software homer. The study evaluates savings associated with conversion of the diesel powered system to a PV/Wind-Diesel hybrid power system.

Related Content

Hendra Wijaya, Zaekhan Zaekhan, Lukman Junaidi, Ning Ima Arie Wardayanie, Yuliasri Ramadhani Meutia, Nona Widharosa, Tita Rosita. © 2023. 20 pages.
Sufiati Bintanah, Yuliana Noor Setiawati Ulvie, Hapsari Sulistya Kusuma, Firdananda Fikri Jauharany, Hersanti Sulistyaningrum. © 2023. 20 pages.
Diana Nur Afifah, Syafira Noor Pratiwi, Ahmad Ni'matullah Al-Baarri, Denny Nugroho Sugianto. © 2023. 21 pages.
Maria Belgis, Nur Fathonah Sadek, Ardiyan Dwi Masahid, Dian Purbasari, Dyah Ayu Savitri. © 2023. 18 pages.
Sri Mulyani, Yoyok Budi Pramono, Isti Handayani. © 2023. 22 pages.
Dessy Ariyanti, Aprilina Purbasari, Dina Lesdantina, Filicia Wicaksana, Wei Gao. © 2023. 15 pages.
Uyi Sulaeman, Ahmad Zuhairi Abdullah, Shu Yin. © 2023. 19 pages.
Body Bottom