IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Online Prediction of Blood Glucose Levels using Genetic Algorithm

Online Prediction of Blood Glucose Levels using Genetic Algorithm
View Sample PDF
Author(s): Khaled Eskaf (Arab Academy for Science, Technology and Maritime Transport, Egypt), Tim Ritchings (University of Salford, UK)and Osama Bedawy (Arab Academy for Science, Technology and Maritime Transport, Egypt)
Copyright: 2014
Pages: 12
Source title: Biologically-Inspired Techniques for Knowledge Discovery and Data Mining
Source Author(s)/Editor(s): Shafiq Alam (University of Auckland, New Zealand), Gillian Dobbie (University of Auckland, New Zealand), Yun Sing Koh (University of Auckland, New Zealand)and Saeed ur Rehman (Unitec Institute of Technology, New Zealand)
DOI: 10.4018/978-1-4666-6078-6.ch014

Purchase

View Online Prediction of Blood Glucose Levels using Genetic Algorithm on the publisher's website for pricing and purchasing information.

Abstract

Diabetes mellitus is one of the most common chronic diseases. The number of cases of diabetes in the world is likely to increase more than two fold in the next 30 years: from 115 million in 2000 to 284 million in 2030. This chapter is concerned with helping diabetic patients to manage themselves by developing a computer system that predicts their Blood Glucose Level (BGL) after 30 minutes on the basis of their current levels, so that they can administer insulin. This will enable the diabetic patient to continue living a normal daily life, as much as is possible. The prediction of BGLs based on the current levels BGLs become feasible through the advent of Continuous Glucose Monitoring (CGM) systems, which are able to sample patients' BGLs, typically 5 minutes, and computer systems that can process and analyse these samples. The approach taken in this chapter uses machine-learning techniques, specifically Genetic Algorithms (GA), to learn BGL patterns over an hour and the resulting value 30 minutes later, without questioning the patients about their food intake and activities. The GAs were invested using the raw BGLs as input and metadata derived from a Diabetic Dynamic Model of BGLs supplemented by the changes in patients' BGLs over the previous hour. The results obtained in a preliminary study including 4 virtual patients taken from the AIDA diabetes simulation software and 3 volunteers using the DexCom SEVEN system, show that the metadata approach gives more accurate predictions. Online learning, whereby new BGL patterns were incorporated into the prediction system as they were encountered, improved the results further.

Related Content

. © 2023. 34 pages.
. © 2023. 15 pages.
. © 2023. 15 pages.
. © 2023. 18 pages.
. © 2023. 24 pages.
. © 2023. 32 pages.
. © 2023. 21 pages.
Body Bottom