IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Load-Balanced Multiple Gateway Enabled Wireless Mesh Network for Applications in Emergency and Disaster Recovery

Load-Balanced Multiple Gateway Enabled Wireless Mesh Network for Applications in Emergency and Disaster Recovery
View Sample PDF
Author(s): Muddesar Iqbal (University of Gujrat, Pakistan), Xinheng Wang (Swansea University, UK)and Hui Zhang (Swansea University, UK)
Copyright: 2013
Pages: 19
Source title: Innovations and Approaches for Resilient and Adaptive Systems
Source Author(s)/Editor(s): Vincenzo De Florio (PATS Research Group, University of Antwerp and iMinds, Belgium)
DOI: 10.4018/978-1-4666-2056-8.ch016

Purchase


Abstract

A gateway node in a WMN acts as bridge between mesh nodes and the external network in order to exchange information between the wireless mesh network operating in a disaster stricken area and remotely located rescue headquarters and government agencies. Using a single gateway, WMN creates huge congestion on the routes to the gateway, as all the data traffic may travel in the same direction using longer routes to access the gateway node, causing channel contention between nodes that operate within carrier sensing range of each other. Therefore a multiple gateway environment is crucial during WMN application in emergency and disaster recovery. This paper presents the design and implementation of a Load-Balanced Gateway Discovery routing protocol called LBGD-AODV, which provides multiple gateway support in Wireless Mesh Network. LBGD-AODV is designed as an extension to the Ad hoc On-Demand Distance Vector (AODV) routing protocol and uses a periodic gateway advertisement scheme equipped with an efficient algorithm to avoid congestion by establishing load-balanced routes to the gateway nodes for Internet traffic. The evaluation tests show that the LBGD-AODV has not compromised the efficiency of basic AODV routing and has improved the performance of the network.

Related Content

David Zelinka, Bassel Daher. © 2021. 30 pages.
David Zelinka, Bassel Daher. © 2021. 29 pages.
Narendranath Shanbhag, Eric Pardede. © 2021. 31 pages.
Marc Haddad, Rami Otayek. © 2021. 20 pages.
Reem A. ElHarakany, Alfredo Moscardini, Nermine M. Khalifa, Marwa M. Abd Elghany, Mona M. Abd Elghany. © 2021. 23 pages.
Sanjay Soni, Basant Kumar Chourasia. © 2021. 35 pages.
Lina Carvajal-Prieto, Milton M. Herrera. © 2021. 20 pages.
Body Bottom