IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Finding Attractors on a Folding Energy Landscape

Finding Attractors on a Folding Energy Landscape
View Sample PDF
Author(s): Wilfred Ndifon (Princeton University, USA & Weizmann Institute of Science, Israel)and Jonathan Dushoff (McMaster University, Canada)
Copyright: 2011
Pages: 11
Source title: Handbook of Research on Computational and Systems Biology: Interdisciplinary Applications
Source Author(s)/Editor(s): Limin Angela Liu (Shanghai Jiao Tong University, China), Dongqing Wei (Shanghai Jiao Tong University, China), Yixue Li (Shanghai Jiao Tong University, China)and Huimin Lei (Shanghai Jiao Tong University, China)
DOI: 10.4018/978-1-60960-491-2.ch025

Purchase

View Finding Attractors on a Folding Energy Landscape on the publisher's website for pricing and purchasing information.

Abstract

RNA sequences fold into their native conformations by means of an adaptive search of their folding energy landscapes. The energy landscape may contain one or more suboptimal attractor conformations, making it possible for an RNA sequence to become trapped in a suboptimal attractor during the folding process. How the probability that an RNA sequence will find a given attractor before it finds another one depends on the relative positions of those attractors on the energy landscape is not well understood. Similarly, there is an inadequate understanding of the mechanisms that underlie differences in the amount of time an RNA sequence spends in a particular state. Elucidation of those mechanisms would contribute to the understanding of constraints operating on RNA folding. This chapter explores the kinetics of RNA folding using theoretical models and experimental data. Discrepancies between experimental predictions and expectations based on prevailing assumptions about the determinants of RNA folding kinetics are highlighted. An analogy between kinetic accessibility and evolutionary accessibility is also discussed.

Related Content

P. Chitra, A. Saleem Raja, V. Sivakumar. © 2024. 24 pages.
K. Ezhilarasan, K. Somasundaram, T. Kalaiselvi, Praveenkumar Somasundaram, S. Karthigai Selvi, A. Jeevarekha. © 2024. 36 pages.
Kande Archana, V. Kamakshi Prasad, M. Ashok. © 2024. 17 pages.
Ritesh Kumar Jain, Kamal Kant Hiran. © 2024. 23 pages.
U. Vignesh, R. Elakya. © 2024. 13 pages.
S. Karthigai Selvi, R. Siva Shankar, K. Ezhilarasan. © 2024. 16 pages.
Vemasani Varshini, Maheswari Raja, Sharath Kumar Jagannathan. © 2024. 20 pages.
Body Bottom