IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Extended Time Machine Design using Reconfigurable Computing for Efficient Recording and Retrieval of Gigabit Network Traffic

Extended Time Machine Design using Reconfigurable Computing for Efficient Recording and Retrieval of Gigabit Network Traffic
View Sample PDF
Author(s): S. Sajan Kumar (Amrita Vishwa Vidyapeetham, India), M. Hari Krishna Prasad (Amrita Vishwa Vidyapeetham, India)and Suresh Raju Pilli (Amrita Vishwa Vidyapeetham, India)
Copyright: 2012
Pages: 11
Source title: Computer Engineering: Concepts, Methodologies, Tools and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-61350-456-7.ch313

Purchase


Abstract

Till date there are no systems which promise to efficiently store and retrieve high volume network traffic. Like Time Machine, this efficiently records and retrieves high volume network traffic. The bottleneck of such systems has been to capture packets at such a high speed without dropping and to write a large amount of data to a disk quicklt and sufficiently, without impact on the integrity of the captured data (Ref. Cooke.E., Myrick.A., Rusek.D., & Jahanian.F(2006)). Certain hardware and software parts of the operating system (like drivers, input/output interfaces) cannot cope with such a high volume of data from a network, which may cause loss of data. Based on such experiences the authors have come up with a redesigned implementation of the system which have specialized capture hardware with its own Application Programming Interface for overcoming loss of data and improving efficiency in recording mechanisms.

Related Content

Preethi, Sapna R., Mohammed Mujeer Ulla. © 2023. 16 pages.
Srividya P.. © 2023. 12 pages.
Preeti Sahu. © 2023. 15 pages.
Vandana Niranjan. © 2023. 23 pages.
S. Darwin, E. Fantin Irudaya Raj, M. Appadurai, M. Chithambara Thanu. © 2023. 33 pages.
Shankara Murthy H. M., Niranjana Rai, Ramakrishna N. Hegde. © 2023. 23 pages.
Jothimani K., Bhagya Jyothi K. L.. © 2023. 19 pages.
Body Bottom