IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Expert Guided Autonomous Mobile Robot Learning

Expert Guided Autonomous Mobile Robot Learning
View Sample PDF
Author(s): Gintautas Narvydas (Kaunas University of Technology, Lithuania), Vidas Raudonis (Kaunas University of Technology, Lithuania)and Rimvydas Simutis (Kaunas University of Technology, Lithuania)
Copyright: 2011
Pages: 16
Source title: Knowledge-Based Intelligent System Advancements: Systemic and Cybernetic Approaches
Source Author(s)/Editor(s): Jerzy Jozefczyk (Wroclaw University of Technology, Poland)and Donat Orski (Wroclaw University of Technology, Poland)
DOI: 10.4018/978-1-61692-811-7.ch011

Purchase

View Expert Guided Autonomous Mobile Robot Learning on the publisher's website for pricing and purchasing information.

Abstract

In the control of autonomous mobile robots there exist two types of control: global control and local control. The requirement to solve global and local tasks arises respectively. This chapter concentrates on local tasks and shows that robots can learn to cope with some local tasks within minutes. The main idea of the chapter is to show that, while creating intelligent control systems for autonomous mobile robots, the beginning is most important as we have to transfer as much as possible human knowledge and human expert-operator skills into the intelligent control system. Successful transfer ensures fast and good results. One of the most advanced techniques in robotics is an autonomous mobile robot on-line learning from the experts’ demonstrations. Further, the latter technique is briefly described in this chapter. As an example of local task the wall following is taken. The main goal of our experiment is to teach the autonomous mobile robot within 10 minutes to follow the wall of the maze as fast and as precisely as it is possible. This task also can be transformed to the obstacle circuit on the left or on the right. The main part of the suggested control system is a small Feed-Forward Artificial Neural Network. In some particular cases – critical situations – “If-Then” rules undertake the control, but our goal is to minimize possibility that these rules would start controlling the robot. The aim of the experiment is to implement the proposed technique on the real robot. This technique enables to reach desirable capabilities in control much faster than they would be reached using Evolutionary or Genetic Algorithms, or trying to create the control systems by hand using “If-Then” rules or Fuzzy Logic. In order to evaluate the quality of the intelligent control system to control an autonomous mobile robot we calculate objective function values and the percentage of the robot work loops when “If-Then” rules control the robot.

Related Content

Man Tianxing, Vasiliy Yurievich Osipov, Ildar Raisovich Baimuratov, Natalia Alexandrovna Zhukova, Alexander Ivanovich Vodyaho, Sergey Vyacheslavovich Lebedev. © 2020. 27 pages.
Alexey Kashevnik, Nikolay Teslya. © 2020. 23 pages.
Sergey Vyacheslavovich Lebedev, Michail Panteleyev. © 2020. 26 pages.
Valentin Olenev, Yuriy Sheynin, Irina Lavrovskaya, Ilya Korobkov, Lev Kurbanov, Nadezhda Chumakova, Nikolay Sinyov. © 2020. 42 pages.
Konstantin Nedovodeev, Yuriy Sheynin, Alexey Syschikov, Boris Sedov, Vera Ivanova, Sergey Pakharev. © 2020. 34 pages.
Andrey Kuzmin, Maxim Safronov, Oleg Bodin, Victor Baranov. © 2020. 23 pages.
Alexander Yu. Meigal, Dmitry G. Korzun, Alex P. Moschevikin, Sergey Reginya, Liudmila I. Gerasimova-Meigal. © 2020. 26 pages.
Body Bottom