IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

A Design Methodology of MIN-Based Network for MPPSoC on Reconfigurable Architecture

A Design Methodology of MIN-Based Network for MPPSoC on Reconfigurable Architecture
View Sample PDF
Author(s): Y. Aydi (University of Sfax, Tunisia), M. Baklouti (University of Sfax, Tunisia & University of Lille, France), Ph. Marquet (University of Lille, France), M. Abid (University of Sfax, Tunisia)and J.L. Dekeyser (University of Lille, France)
Copyright: 2011
Pages: 26
Source title: Reconfigurable Embedded Control Systems: Applications for Flexibility and Agility
Source Author(s)/Editor(s): Mohamed Khalgui (Xidian University, China)and Hans-Michael Hanisch (Martin Luther University, Germany)
DOI: 10.4018/978-1-60960-086-0.ch009

Purchase

View A Design Methodology of MIN-Based Network for MPPSoC on Reconfigurable Architecture on the publisher's website for pricing and purchasing information.

Abstract

Massive parallel processing systems, particularly Single Instruction Multiple Data architectures, play a crucial role in the field of data intensive parallel applications. One of the primary goals in using these systems is their scalability and their linear increase in processing power by increasing the number of processing units. However, communication networks are the big challenging issue facing researchers. One of the most important networks on chip for parallel systems is the multistage interconnection network. In this paper, we propose a design methodology of multistage interconnection networks for massively parallel systems on chip. The framework covers the design step from algorithm level to RTL. We first develop a functional formalization of MIN-based on-chip network at a high level of abstraction. The specification and the validation of the model have been defined in the logic of ACL2 proving system. The main objective in this step is to provide a formal description of the network that integrates architectural parameters which have a huge impact on design costs. After validating the functional model, step 2 consists in the design and the implementation of the Delta multistage networks on chip dedicated to parallel multi-cores architectures on reconfigurable platforms FPGA. In the last step, we propose an evaluation methodology based on performance and cost metrics to evaluate different topologies of dynamic network through data parallel applications with different number of cores. We also show in the proposed framework that multistage interconnection networks are cost-effective high performance networks for parallel SOCs.

Related Content

Babita Srivastava. © 2024. 21 pages.
Sakuntala Rao, Shalini Chandra, Dhrupad Mathur. © 2024. 27 pages.
Satya Sekhar Venkata Gudimetla, Naveen Tirumalaraju. © 2024. 24 pages.
Neeta Baporikar. © 2024. 23 pages.
Shankar Subramanian Subramanian, Amritha Subhayan Krishnan, Arumugam Seetharaman. © 2024. 35 pages.
Charu Banga, Farhan Ujager. © 2024. 24 pages.
Munir Ahmad. © 2024. 27 pages.
Body Bottom