IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Design, Analysis, and Applications of Mobile Manipulators

Design, Analysis, and Applications of Mobile Manipulators
View Sample PDF
Author(s): Tao Song (Shanghai University, China), Feng Feng Xi (Ryerson University, Canada)and Shuai Guo (Shanghai University, China)
Copyright: 2019
Pages: 40
Source title: Novel Design and Applications of Robotics Technologies
Source Author(s)/Editor(s): Dan Zhang (York University, Canada)and Bin Wei (York University, Canada)
DOI: 10.4018/978-1-5225-5276-5.ch002

Purchase

View Design, Analysis, and Applications of Mobile Manipulators on the publisher's website for pricing and purchasing information.

Abstract

Presented in this chapter is a method for design and analysis of a mobile manipulator. The wrench induced by the movement of the robot arm will cause system tip-over or slip. In tip-over analysis, three cases are considered. The first case deals with the effect of the link weights and tip payload on the horizontal position of the CG. The second case deals with the effect of the joint speeds through the coupling terms including centrifugal forces and gyroscopic moments. The third case deals with the effect of the joint accelerations through the inertia forces and moments. In slip analysis, the first case considers the reaction force in relation to the stand-off distance between system and work-piece. The second and third cases investigate the effects of the joint speeds and accelerations. Then, the mobile platform is optimized to have maximum tip-over stability which optimizes the placement of the robot arm and accessory on the mobile platform. The effectiveness of the proposed method is demonstrated.

Related Content

Rashmi Rani Samantaray, Zahira Tabassum, Abdul Azeez. © 2024. 32 pages.
Sanjana Prasad, Deepashree Rajendra Prasad. © 2024. 25 pages.
Deepak Varadam, Sahana P. Shankar, Aryan Bharadwaj, Tanvi Saxena, Sarthak Agrawal, Shraddha Dayananda. © 2024. 24 pages.
Tarun Kumar Vashishth, Vikas Sharma, Kewal Krishan Sharma, Bhupendra Kumar, Sachin Chaudhary, Rajneesh Panwar. © 2024. 29 pages.
Mrutyunjaya S. Hiremath, Rajashekhar C. Biradar. © 2024. 30 pages.
C. L. Chayalakshmi, Mahabaleshwar S. Kakkasageri, Rajani S. Pujar, Nayana Hegde. © 2024. 30 pages.
Amit Kumar Tyagi. © 2024. 29 pages.
Body Bottom