IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Context-Based Scene Understanding

Context-Based Scene Understanding
View Sample PDF
Author(s): Esfandiar Zolghadr (Florida Atlantic University, USA)and Borko Furht (Florida Atlantic University, USA)
Copyright: 2018
Pages: 20
Source title: Computer Vision: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-5225-5204-8.ch029

Purchase

View Context-Based Scene Understanding on the publisher's website for pricing and purchasing information.

Abstract

Context plays an important role in performance of object detection. There are two popular considerations in building context models for computer vision applications; type of context (semantic, spatial, scale) and scope of the relations (pairwise, high-order). In this paper, a new unified framework is presented that combines multiple sources of context in high-order relations to encode semantical coherence and consistency of the scenes. This framework introduces a new descriptor called context relevance score to model context-based distribution of the response variables and apply it to two distributions. First model incorporates context descriptor along with annotation response into a supervised Latent Dirichlet Allocation (LDA) built on multi-variate Bernoulli distribution called Context-Based LDA (CBLDA). The second model is based on multi-variate Wallenius' non-central Hyper-geometric distribution and is called Wallenius LDA (WLDA). WLDA incorporates context knowledge as bias parameter. Scene context is modeled as a graph and effectively used in object detection framework to maximize semantical consistency of the scene. The graph can also be used in recognition of out-of-context objects. Annotation metadata of Sun397 dataset is used to construct the context model. Performance of the proposed approaches was evaluated on ImageNet dataset. Comparison between proposed approaches and state-of-art multi-class object annotation algorithm shows superiority of presented approach in labeling of scene content.

Related Content

Aswathy Ravikumar, Harini Sriraman. © 2023. 18 pages.
Ezhilarasie R., Aishwarya N., Subramani V., Umamakeswari A.. © 2023. 10 pages.
Sangeetha J.. © 2023. 13 pages.
Manivannan Doraipandian, Sriram J., Yathishan D., Palanivel S.. © 2023. 14 pages.
T. Kavitha, Malini S., Senbagavalli G.. © 2023. 36 pages.
Uma K. V., Aakash V., Deisy C.. © 2023. 23 pages.
Alageswaran Ramaiah, Arun K. S., Yathishan D., Sriram J., Palanivel S.. © 2023. 17 pages.
Body Bottom