IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Application of the Software System of Finite Element Analysis for the Simulation and Design Optimization of Solar Photovoltaic Thermal Modules

Application of the Software System of Finite Element Analysis for the Simulation and Design Optimization of Solar Photovoltaic Thermal Modules
View Sample PDF
Author(s): Vladimir Panchenko (Russian University of Transport, Russia), Sergey Chirskiy (Bauman Moscow State Technical University, Russia)and Valeriy Vladimirovich Kharchenko (Federal Scientific Agroengineering Center VIM, Russia)
Copyright: 2020
Pages: 26
Source title: Handbook of Research on Smart Computing for Renewable Energy and Agro-Engineering
Source Author(s)/Editor(s): Valeriy Kharchenko (Federal Scientific Agroengineering Center VIM, Russia)and Pandian Vasant (Universiti Teknologi Petronas, Malaysia)
DOI: 10.4018/978-1-7998-1216-6.ch005

Purchase


Abstract

The chapter discusses the simulation of thermal operating conditions and the optimization of the design of solar photovoltaic thermal modules. As a realization of the developed method, two photovoltaic thermal modules with one-sided solar cells with one-sided heat removal and two-sided solar cells with two-sided heat removal are presented. The components of the developed models of solar modules must be optimized on the basis of the required indicators of the thermal mode of operation of the modules. For this task, a method has been developed for visualizing thermal processes using the Ansys system of finite element analysis, which has been used to research thermal modes of operation and to optimize the design of the modules created. With the help of the developed method, the temperature fields of the module components, coolant velocity and its flow lines in the developed models of a planar photovoltaic thermal roofing panel and a concentrator photovoltaic thermal two-sided module are visualized.

Related Content

Muhammad Asim, Aamir Raza, Muhammad Safdar, Mian Muhammad Ahmed, Amman Khokhar, Mohd Aarif, Mohammed Saleh Al Ansari, Jaffar Sattar, Ishtiaq Uz Zaman Chowdhury. © 2024. 26 pages.
Mian Muhammad Ahmed, Umer Sharif, Aamir Raza, Muhammad Safdar, Waqar Ali, Muhammad Asim, Hafsa Muzammal, Jaffar Sattar, Sheraz Maqbool, Malaika Zaheer. © 2024. 24 pages.
James Kanyepe, Tinashe Musasa, Katlego Mahupa Ketlhaetse, Brave Zizhou. © 2024. 29 pages.
Mohamed Salah El Din, Masengu Reason. © 2024. 25 pages.
Blessing Hodzi, Neil Batsirai Maheve. © 2024. 19 pages.
Joshua Risiro, Divaries Cosmas Jaravaza, Paul Mukucha. © 2024. 27 pages.
Option Takunda Chiwaridzo, Rodwell Musiiwa, Tariro Hlasi. © 2024. 26 pages.
Body Bottom