IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Soil, Water, and Climate Change Integrated Impact Assessment on Yields: Approach from Central Mexico

Soil, Water, and Climate Change Integrated Impact Assessment on Yields: Approach from Central Mexico
View Sample PDF
Author(s): Alejandro I. Monterroso-Rivas (Universidad Autónoma Chapingo, Chapingo, Mexico), Jesús D. Gómez-Díaz (Universidad Autónoma Chapingo, Chapingo, Mexico)and Antonio R. Arce-Romero (Universidad Autónoma Chapingo, Chapingo, Mexico)
Copyright: 2018
Volume: 9
Issue: 2
Pages: 12
Source title: International Journal of Agricultural and Environmental Information Systems (IJAEIS)
Editor(s)-in-Chief: Frederic Andres (National Institute of Informatics, Japan), Chutiporn Anutariya (Asian Institute of Technology, Thailand), Teeradaj Racharak (Japan Advanced Institute of Science and Technology, Japan)and Watanee Jearanaiwongkul (National institute of Informatics, Japan)
DOI: 10.4018/IJAEIS.2018040102

Purchase

View Soil, Water, and Climate Change Integrated Impact Assessment on Yields: Approach from Central Mexico on the publisher's website for pricing and purchasing information.

Abstract

This article describes the potential yields of maize, wheat and barley which were modeled with climate change, soil degradation and water balance scenarios in central Mexico. Two adaptation measures were also evaluated. To estimate yields the AquaCrop-FAO model was applied. Three study cases were chosen and their climate, soil, phenological and management information was compiled. Once calibrated, the authors tested the response in yields for 28 climate change scenarios: five General Circulation Models, two RCP and three-time horizons. Two adaptation actions were evaluated: changing planting date and increase of organic mulches. Results show that yield of maize in the near future (2015-2039) would fall 50% average, barley and wheat yields would decrease in 40% and 25% respectively. If soil degradation and loss is considered, the yield will reduce considerably. Adaptation measure based on changing planting date was as effective as increasing mulches. It is necessary to consider soil together with climate change scenarios in yield modeling. It is possible to suggest wrong adaptation measures if only the climate is considered and not all the variables involved.

Related Content

Vincent Soulignac, François Pinet, Mathilde Bodelet, Hélène Gross. © 2023. 28 pages.
Haiying Liu, Yongcai Lai, Zhenhua Xu, Zhonliang Yang, Yanmin Yu, Ping Yan. © 2023. 12 pages.
Ren Wang. © 2023. 14 pages.
Daidyi Wang, Fengsong Zhang. © 2022. 15 pages.
Takahiro Kawamura, Tetsuo Katsuragi, Akio Kobayashi, Motoko Inatomi, Masataka Oshiro, Hisashi Eguchi. © 2022. 19 pages.
Cédric Baudrit, Patrice Buche, Nadine Leconte, Christophe Fernandez, Maëllis Belna, Geneviève Gésan-Guiziou. © 2022. 22 pages.
Jingfa Wang, Huishi Du. © 2022. 11 pages.
Body Bottom