IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Application of Modified Biogeography Based Optimization in AGC of an Interconnected Multi-Unit Multi-Source AC-DC Linked Power System

Application of Modified Biogeography Based Optimization in AGC of an Interconnected Multi-Unit Multi-Source AC-DC Linked Power System
View Sample PDF
Author(s): Dipayan Guha (Department of Electrical Engineering, Dr. B.C. Roy Engineering College, Durgapur, India), Provas Kumar Roy (Department of Electrical Engineering, Jalpaiguri Government Engineering College, Jalpaiguri, India)and Subrata Banerjee (Department of Electrical Engineering, National Institute of Technology, Durgapur, India)
Copyright: 2016
Volume: 5
Issue: 3
Pages: 18
Source title: International Journal of Energy Optimization and Engineering (IJEOE)
Editor(s)-in-Chief: Jose Marmolejo-Saucedo (National Autonomous University of Mexico), Gerhard-Wilhelm Weber (Poznań University of Technology, Poland)and Pandian Vasant (Ton Duc Thang University, Vietnam)
DOI: 10.4018/IJEOE.2016070101

Purchase


Abstract

An attempt has been made for the effective application of biogeography based optimization and its modified version to solve load frequency control (LFC) problem. Two-area interconnected multi-unit multi-source power system having thermal, hydro and gas power plant without and with AC-DC link is considered for study. Proportional-integral-derivative controller is used as secondary controller in LFC system and its gains are tuned by proposed algorithms through minimization of integral time absolute error based objective function. The results confirm the effectiveness of proposed algorithms after comparing results with other evolutionary algorithms like differential evolution (DE), teaching learning based optimization (TLBO) for the similar test system. The robustness of proposed algorithm is checked with different objective functions like integral square error, integral absolute error, integral time square error criterions and under different loading conditions. Critical analysis of results reveals that proposed method gives better performance than that obtained with DE, TLBO.

Related Content

Vasudha Bahl, Anoop Bhola. © 2022. 26 pages.
Sunanda Hazra, Provas Kumar Roy. © 2022. 22 pages.
Andrey A. Kovalev, Dmitriy A. Kovalev, Victor S. Grigoriev, Vladimir Panchenko. © 2022. 17 pages.
Daniel Osezua Aikhuele, Ayodele A. Periola, Elijah Aigbedion, Herold U. Nwosu. © 2022. 20 pages.
Kawtar Tifidat, Noureddine Maouhoub, Abdelaaziz Benahmida. © 2022. 23 pages.
Nuno Domingues, Jorge Mendonça Costa, Rui Miguel Paulo. © 2022. 26 pages.
Abdelouadoud Loukriz, Djamel Saigaa, Abdelhammid Kherbachi, Mustapha Koriker, Ahmed Bendib, Mahmoud Drif. © 2022. 19 pages.
Body Bottom